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1 INTRODUCTION 

1.1 MODEL PILOT AREA OF INTEREST 

The geographic interest area of this pilot assignment is the cross-border areas of 

Ethiopia, Kenya, Somalia, South Sudan, and Uganda. These areas are known 

as Cluster 1 (Karamoja Cluster- cross-border shared by Uganda, South-Sudan, 

Kenya and Ethiopia) and IGAD Cluster 2 (cross-border area shared by Kenya, 

Ethiopia, and Somalia). Specifically, it covers the districts in Karamoja region of 

Uganda; West Pokot, Turkana, Marsabit, Wajir and Mandera counties in Kenya; 

South Omo, Borana and Liben Zones in Ethiopia; Gedo region in Somalia 

(Figure 1). Much of the area of interest is covered by shrubs and grassland 

which defines the area as predominantly a pastoral zone (Figure 1) and is the 

extent of the pilot rangeland prototype model. 

 

Figure 1: Map showing land cover over project area of interest which is the three 
IGAD cross-border areas (Data from ESA). 
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1.2 DATA SET USED 

Datasets used in this model include Normalized Difference Vegetation Index 

(NDVI), Rainfall/Precipitation (PPT), Temperature (Temp), and Soil Moisture 

(Soilw). As a prerequisite for modeling, all the dataset will be grouped in two 

periods i.e. 1999-2013 for model development (training period) and 2014-2017 

for model validation at seasonal time scale. The datasets were processed in 

seasonal timescales i.e. Mar-April-May (MAM), June-July-August (JJA), and 

October-November-December (OND) seasons.  

The two statistical measure of mean and maximum are used to generate pixel 

data values at seasonal timescale, however, for rainfall the total rainfall of the 

respective seasons is used instead of maximum amount. These statistical 

parameters were then used in developing the model. In order to achieve this, 

inferential statistics were used to correlate variables and for testing significance. 

Result from correlation test indicates that, rainfall mean and the mean of soil 

moisture has high correlation with maximum NDVI at seasonal scale (Figure 2).  

 
Figure 2: Correlation matrix of maximum, mean, and total for seasonal long term 
mean of NDVI, Temperature, Soil moisture, and Rainfall for March-April-May 
season.  

The correlation matrix presented in the figure above was reduced to important 

variable in Table 1 which gave high correlation values. From this, a combination 
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for developing the prediction model was selected, that is maximum NDVI, total 

Rainfall, maximum of Soil moisture (NDVImax, RainTotal, & SoilwMax). 

Table 1: Independence variables with high positive correlation values. 

Correlation Rainfall.Mean Rainfall.Total Soilw.Mean Soilw.Max 

NDVI.Max 81.5% 81.5% 47.9% 47.8% 

From the analysis, seasonal rainfall and soil moisture are well correlated 

spatially with maximum NDVI over the region, Figure 3 and Error! Reference 

source not found. for OND, and Figure 4 and Figure 6 for MAM respectively. 

This was observed as well JJA seasons. However, temperature on the other 

hand gave poor correlation with maximum NDVI, thus it was dropped from the 

prediction model development. Hence, seasonal rainfall and soil moisture were 

considered in this model development as predictands. Few areas with negative 

correlation especially with rainfall indicates that vegetation grew better 

accordingly with a continuous increase of rainfall in rainless areas (Leilei et al., 

2014). 

  

 

Figure 3: Spatial correlation for OND season between maximum NDVI and rainfall 
total over the area for the period 1999 to 2017. 
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Figure 4:  Spatial correlation for OND season between maximum NDVI and 
maximum soil moisture over the area for the period 1999 to 2017.  
 

 
Figure 5: Spatial correlation for MAM season between maximum NDVI and rainfall 
total over the area for the period 1999 to 2017. 

 

 
Figure 6: Spatial correlation for MAM season between maximum NDVI and 
maximum soil moisture over the area for the period 1999 to 2017.  

 

1.3 MULTICOLLINEARITY TEST 

Detecting multicollinearity before developing a model is critical and removing the 

same improves model performance. The easiest way for the detection of 

multicollinearity is to examine the correlation between each pair of explanatory 

variables (Imdadullah et al., 2016). If two of the variables are highly correlated, 

then this may be the possible source of multicollinearity. However, pair-wise 
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correlation between the explanatory variables may be considered as the 

sufficient, but not the necessary condition for the multicollinearity (Wichers, 

1975; Imdadullah et al., 2016). 

Another way for detecting the multicollinearity among variables is to determine 

their coefficient in a regression model. As, the coefficient of determination in the 

regression model increases toward unity, that is, as the collinearity of a 

variable with the other regressors increases, variance inflation factor (VIF) also 

increases and in the limit it can be infinite (Adeboye et al., 2014; Imdadullah et 

al., 2016). Therefore, we can use the VIF as an indicator of multicollinearity. The 

larger the value of VIFj, the more “troublesome” or collinear the variable Xj. As a 

rule of thumb, if the VIF of a variable exceeds 2.5 (Adeboye et al., 2014) then 

there is multicollinearity, which will happen if multiple correlation coefficient for j-

th variable R2j exceeds 0.90, that variable is said to be highly collinear. 

The following tests were also used for multicollinearity testing as one method is 

not sufficient; Determinant |X'X| (Wichers, 1975; Imdadullah et al., 2016) help in 

normalizing the correlation matrix and if the value is zero then collinearity exists, 

Farrar Chi-Square test (Farrar and Glauber, 1967; Adeboye et al., 2014; 

Imdadullah et al., 2016), Red Indicator (Kovács et. Al., 2005; Imdadullah et al., 

2016), Sum of Lambda Inverse (Imdadullah et al., 2016), Theil's Method (Theil, 

1971; Imdadullah et al., 2016), and Condition Numbe (Adeboye et al., 2014; 

Imdadullah et al., 2016) which determines colliniearity if the value is greater than 

1000. Klein rule (Imdadullah et al., 2016) which give the location of 

multicollinearity. One and zero were used to determine the test results as shown 

below. 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 

The multicollinearity test was done for the three seasons (MAM, JJA, and OND) 

as shown in Table 2 below. Out of the six diagnostic tests, MAM season had a 

multicollinearity detected by two test while the other seasons had one detection. 

This number is not enough to qualify multicollinearity in the data-set. The VIF 

values for all the seasons and individual data-sets were less than 2.5 which is 
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the cut point to determine collinearity, Klein rule also had zero result indicating 

no multicollinearity in the data (Table 3). 

Table 2: The overall multicollinearity diagnostics for the data-sets used for the 
three seasons. 

 MAM JJA OND 

Result Detection Result Detection Result Detection 

Determinant 
|X'X| 

0.3958 0 0.4431 0 0.5986 0 

Farrar Chi-
Square 

2639.1631 1 2317.38
6 

1 1461.0423 1 

Red Indicator 0.5267 1 0.4024 0 0.3890 0 

Sum of 
Lambda 
Inverse 

5.4774 0 5.6741 0 4.2535 0 

Theil's 
Method 

0.1580 0 0.1898 0 - 0.1382 0 

Condition 
Number 

24.5810 0 21.4841 0 21.1255 0 

 
 
Table 3: All individual multicollinearity diagnostics result to determine the 
location of collinearity. 

 MAM JJA OND 

VIF Klein VIF Klein VIF Klein 

Rainfall 1.4355 0 1.6303 0 1.1556 0 

Temperature 1.7686 0 1.8433 0 1.4565 0 

Soil Moisture  2.2734 0 2.2005 0 1.6415 0 

1.4 PROTOTYPE RANGELAND PREDICTION MODEL DEVELOPMENT 

An exploratory technique known as Geographically Weighted Regression (GWR) 

was used in developing a prototype rangeland feed prediction model. The GWR 

technique is preferred over the Ordinary Least Square Regression (OLR) due to 

its capability of examining the existence of spatial non-stationarity in the 

relationship between a dependent variable and as set of independent variables 

(Fotheringham et al., 2003; Matthews and Yang, 2012; Wang et al., 2013; 

Georganos et al., 2017). This technique is fully described in a book by 

Fotheringham et al. (2003). This method allows estimation of local parameter by 

taking into account the location of observation as shown by the equation (Eqn. 1 

and 2) below; 
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Yi = α(ui,vi) + β(ui,vi)Xi + λ(ui,vi)Zi  i = 1 : n   (Eqn. 1) 

Yi = α(ui,vi) + β(ui,vi)Xi + λ(ui,vi)Zi - εi  i = 1 : n  (Eqn. 2) 

Where coordinates of location i are represented by ui, vi while α, β, and λ are 

local parameters to be estimated particularly at location i (Georganos et al., 

2017), X and Z are independent variables and ε is the mean error (Bias). 

Prediction using this model will be based on grid cells. Eqn. 1 is a model with 

Bias while Eqn. 2 has the bias removed. 

In brief, the basis of this technique is the concern that the fitted coefficient values 

of a global model, fitted to all the data, may not represent detailed local 

variations in the data adequately. In this case, it follows other local regression 

implementations. It differs, however, in not looking for local variation in ‘data’ 

space, but by moving a weighted window over the data, estimating one set of 

coefficient values at every chosen ‘fit’ point. The kernel used here is Gaussian 

but one can also apply the bisquare kernel as well (Charlton et al., 2009).  The fit 

points are very often the points at which observations were made, but do not 

have to be. If the local coefficients vary in space, it can be taken as an indication 

of non-stationarity (Bivand et al., 2020). 

Like other mathematical models, this model has limitations as it doesn’t account 

for both the auto correlations and cross correlations as the predictor variables 

are assumed to be independent of each other (Wang et al., 2013; Ivajnšič et al., 

2014), it also has issues associated with multicollinearity, kernel bandwidth 

selection, and multiple hypothesis testing (Matthews and Yang, 2012). 

Output from the prediction model was converted to pasture biomass using the 

equation below (Eqn. 3). This technique is well described in Hobbs (1995) with 

output in Kg/ha, and was divided by 1000 to convert it to tonnes per hectare 

(t/ha) i.e. 1 t/ha = 1000 kg/ha. 

 Pasture biomass = (6480·2 * Pred.Biomass) - 958·6  Eqn. 3 

This conversion outputs are in kg/ha at seasonal time scale but later converted 

to t/ha. This method was also used to convert observed maximum NDVI to 
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pasture biomass which was then used to assess the skill of the prediction 

models.  

The model development was grid based thus the constants used has a value per 

grid cell. A sample is shown below for MAM and OND seasons (Figure 7 and 

Figure 8 respectively). The intercept here represent α, rainfall coefficient 

represent β, and the soil moisture coefficient represents λ in Eqn. 1 and 2. The 

local correlation of these is significant and has a high value in much of the region 

i.e. over 60% (Figure 7). Each of the three seasons had its unique constant

 which was used in modelling the season. 

 
Figure 7: MAM season constants used in modelling MAM seasonal Biomass, (a) is 
the intercept, (b) is the rainfall coefficient, (c) is the soil moisture coefficient, and 
(d) is the local R square.  
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Figure 8: OND season constants used in modelling OND seasonal Biomass, (a) is 
the intercept, (b) is the rainfall coefficient, (c) is the soil moisture coefficient, and 
(d) is the local R square.  

A first run of the model without considering the error term (Eqn. 1) gave the 

following result for MAM the main season shown in Figure 9. More pasture 

biomass (greater than 2 t/ha) was observed over the eastern, western, and 

northern part of the study area in 2018 and much in the northern part in 2019. 

The JJA season (not the main season) also had the same but on western and 

norther part of the study area. This is the expected pattern in the JJA season as 

NDVI performs best over the western and northern part of the study area during 

this season. When the error term is included, (Eqn. 2) we get a more realistic 

distribution of the the pasture biomass over the study area as shown in Figure 

10. The performance of these two model is assessed in the next section.  



 

 

IGAD-RPLRP 10 

 

 
Figure 9: Predicted Biomass for MAM season over the study area from 2018 to 
2019 without considering the error term. 

 

 
Figure 10: Predicted pasture biomass for MAM season over the study area from 
2018 to 2019 with the error term considered. 

2 METHODS USED IN MODEL SKILL ASSESSMENT 

2.1 VISUAL VERIFICATION METHOD 

The "eyeball" method is still the oldest and best verification method which look at 

the forecast and observations side by side and use human judgment to discern 

the forecast errors, however, this method is not quantitative (Stanski et al., 

1989). The method is great if you only have a few forecasts, or you're not 

interested in quantitative verification statistics, but still useful when combined 

with statistics. 
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2.2 RELIABILITY DIAGRAM AND BOX PLOT 

Reliability diagram (Wilks 1995) also known as attribute diagram was used to 

determine how well the predicted events correspond to their observed frequency. 

Reliability is indicated by the proximity of the plotted curve to the diagonal line 

(Wilks 1995; Hamill 1997; Bröcker and Smith 2007), and the deviation of this 

curve to the diagonal line gives a conditional bias. If the curve lies below the 

diagonal line, this indicates overforecasting; but above the line indicates 

underforecasting. In addition to the attribute diagram, an exploratory known as 

the box plot (Williamson et al., 1989) used to identify hidden patters in a group of 

data-sets. It has the power to summarize and compare groups of data-sets. The 

box plot show the range of data falling between the 25th and 75th percentiles 

(the difference between UQ (upper quartile) and LQ (lower quartile); Thirumalai 

et al., 2017). The horizontal line inside the box (Error! Reference source not 

found.) representing the median value, and the whiskers represents the 

complete range of the data (Jolliffe and Stephenson, 2012). This helps in 

assessing how well the distribution of predicted values correspond to the 

distribution of observed values. Box plot shows similarity between location, 

spread, and skewness of prediction and observed distributions (Jolliffe and 

Stephenson, 2012). 

2.3 MEAN ERROR AND RELATIVE MEAN ABSOLUTE ERROR 

The Mean Error (ME) and Relative Mean Absolute Error (RMAE) both estimate 

the average prediction error (Wang et al., 2013; Jolliffe and Stephenson, 2012), 

and give a perfect score when the value is zero. ME also known as the BIAS, 

gives the direction of the error while RMAE doesn’t indicate the direction of the 

deviations. The closer the value is to zero the better the prediction model is 

(Table 4). The ME indicates how well the model estimate the corresponding 

observed value, it has a tendency to under-forecast when ME < 0 or over-

forecast when ME > 0 events (Jolliffe and Stephenson, 2012). 

Table 4: Model skill assessment using mean error and relative mean absolute 
error 

Name Values Range Perfect Score 
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Mean Error -∞ to ∞ 0 

Relative Mean Absolute Error 0 to ∞ 0 

2.3.1 Skill Assessment results 

Using visual verification method as the first mode of model skill assessment, it is 

visually clear that Eqn. 2 results performs better than Eqn. 1 output when 

compared with the observed data. Figure 11 represents output of Eqn. 1 

compared with observation while Figure 12 shows comparison of Eqn. 2 outputs 

with observation. Both figures show some pockets of overpredicting and 

underpredicting over the region in MAM (Figure 11), OND, and JJA (Annex 1)

 seasons. This was significantly corrected/improved with application of Bias in 

Eqn. 2 (MAM, Figure 12). Hence, under visual verification method, the model

 represented by Eqn. 2 performs well and should be used in pasture biomass 

prediction after validation in the field. 

 
Figure 11: Predicted pasture biomass with bias compared with observed 
pasture biomass for the MAM seasons from 2018 to 2019.  
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Figure 12: Bias corrected predicted pasture biomass compared with 
observed pasture biomass for the MAM seasons from 2018 to 2019.  

The mean error (Figure 13 part (a)) clearly indicates areas that the model under 

estimated which is represented by the negative values and areas that were 

overestimated represented by the positive values in t/ha. The root mean 

absolute error (RMAE, Figure 13 part (b)) here is a measure of how accurate the 

model predicts the events. The lower values of RMAE indicates better fit, thus, 

this model performed generally well in predicting pasture biomass at seasonal 

time scale. The mean error shown here is what was used to improve the model 

performance in Eqn. 2 for each season i.e. MAM, JJA, and OND. 
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Figure 13: Mean Error (a) and Root Mean Absolute Error (b) for MAM season (first 
row), JJA season (second row), and OND season (third row). 

Box plot was adopted to show the overall pattern of response for predicted 

values to observed values in all the three seasons. The median and the range 

which represents 50% of the data had a small shift when considering observed 

values and predicted ones. In addition to this, the reliability diagram was 

considered. The diagram was used to determine how well the predicted events 

correspond to their observed frequency. The model is said to be reliable if the 

curve falls on the diagonal line and skillful (in percentage) if it falls on the gray 

area of the plot. This model performed well after bias correction (Figure 14) 

which also increases the model skill score.  The model skill score obtained using 

the reliability diagram is presented in Table 5 below for the three seasons in both 

scenarios of bias corrected and with bias. However, the data used to assess the 

skill score was only two years which as not enough to significantly conclude the 

performance. Thus its recommended that the model improvement to be a 

continuous as the model is being run in operational mode. The observed 
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negative skill score in MAM 2018 and OND 2019 indicates that the score of the 

model is less than 33.3%. However, this can be significantly improved with at 

least a 30 year data used on model development. The model uncertainty in all 

the seasons and all scenarios does not exceed 25% (Table 5) thus this model 

performs well in predicting pasture biomass. The inter-annual variability are high 

in both cases due to the different seasonal rainfall diverse (Nicholson, 2017; 

Vellinga and Milton, 2018; Gudoshava et al., 2020) as well as extreme events in 

the region which are attributed to El Nino and La Nina events.  

  
Figure 14: Reliability diagram for MAM 2019 with bias (left) and with bias 
corrected (right). 

 
Table 5: A summary of reliability results (skill score and uncertainty) of the 
prediction model per year for the three seasons. 

 MAM JJA OND 

2018 2019 2018 2019 2018 2019 

W
it
h

 

B
ia

s
 

Skill Score 
(%) 

-9.8 56.7 46.7 93.6 65.5 -13.9 

Uncertainty 
(%)  

24.7 23.6 22..2 24.7 24.4 23.9 

B
ia

s
 

c
o

rr
e

c
te

d
 

Skill Score 
(%) 

-71.1 54.6 54.7 90.8 48.8 -44.1 

Uncertainty 
(%)  

24.4 23.2 22.4 24.6 23.2 23.6 
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2.4 AVAILABLE FORAGE 

Available pasture biomass can be computed from the total biomass pasture 

using a factor presented by Toxopeus, (2000; Eqn.4). This was arrived at after a 

review of different research in Ethiopia and Kenya rangelands (Van Wijngaarden, 

1985; Cossins and Upton, 1987; FAO, 1988). If we are to consider the 

conversion to available forage/pasture then we can use the equation below by 

Toxopeus, (2000), the multiplication factor is 45%.  

 

Available pasture = Pred. Pasture * 45%                            Eqn. 4     

 

Figure 15 shows result after conversion presented as the first column (a), and 

result before conversion as the second column (b). The available forage values 

are between 0 and 4 tonnes per hectare (t/ha) over the study area when 

considering the three seasons (MAM, JJA, and OND), while that of total 

forage/pasture biomass is between 0 and 7 t/ha.  It’s worth noting that the 

pattern for pasture availability is the same thus any can be used for early 

warning purposes as well as management planning. 
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Figure 15: Available forage/pasture represented by the first column (a) while the 
second column (b) represent total pasture before conversion. 

2.5 FIELD VALIDATION  

The next and final stage of skill assessment was field validation (ground 

truthing).  This was to further give confidence in the model which can then be 

rolled out for the whole region. Validation of the model though ground truthing 

(field activity) was done in December 2020 from the 8th to the 17th representing 

the last month of OND season. The aim of the field mission was to undertake 

local forage measurements, ground-truthing and estimation for the OND season. 

This was undertaken within each homogenous land cover unit in the project 

areas of interest.  
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2.5.1 Land cover of the study area 

Savannah vegetation dominates the study area landscape and vegetation 

composition is closely related to rainfall. Vegetation cover increases with altitude 

thus scarce and sparse vegetation is found in low altitude areas compared to 

highlands that have dense vegetation. Ground cover throughout the study area 

varies seasonally depending on various grazing intensities and, overall, canopy 

cover ranges from less than 1% on heavily settled areas to about 30% on steep 

hills. Table 8 below gives a brief description of some of the different land cover 

types. 

Table 6 Description of Land cover types 

Land Cover Classes Description 

Barren/desert areas Consists of bare desert lands, degraded Badlands and 

exposed rangelands/rocky areas 

Mosaic 

Croplands/vegetation 

Predominantly covered by vegetation but agriculture 

and other human activities are expanding 

Sparse Vegetation Consists of thorny shrubs mixed with grasslands. Is 

common in semi-arid parts of rangelands 

Close to open shrub 

land 

Consists of shrub land with thick canopy to areas 

where alteration to open grassland is taking place 

Mixed Forest-shrub-

grassland 

Under this category pockets of remaining forests and 

mixed shrub/grasslands are included. 

2.5.2 Sampling Frame 

A fieldwork protocol has been developed to estimate green biomass (kg DM/ha) 

and available biomass (kg DM/ha) within different homogeneous land-use land 

cover (LULC) at local are field sites here in referred to as stratas. Within 

homogeneous LULC here in referred to as strata, randomly locate one (1) km 

line transect with sampling points of 250m2 located around the pixel centroid to 

allow for plot-pixel comparisons and extrapolation (NDVI metrics). 
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Within grasslands land-cover types, a 1km line transect was used to randomly 

locate sampling points of 1m2 quadrants after every 100m intervals (see 

sampling layout below).  

 

Yield measurements at each point was done by clipping the grass and herb layer 

within each subplot sampled using grass cutter and weighed using the digital 

kilograms automatic weighing machine to allow for plot-pixel comparisons (NDVI 

metrics). The resultant outcomes were extrapolated into total biomass (tons/ha) 

for every corresponding pixels within the different LULC and locations within the 

cluster areas.  

2.5.3 Forage estimation and ground truthing findings 

The forage estimation and ground truthing exercise as well as RPLRP water 

point ground truthing were undertaken in three areas within the Kenyan side of 

the cluster, i.e. Baringo, Marsabit, and Moyale during the period 8th – 17th of 

December 2020. The map below (Figure 16) shows the local areas visited, 

fieldwork major rout and sampling water points in blue.  

 

 

250
m 

250
km 
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Figure 16:  Fieldwork path along different land-cover types with sample photos. 

 

The forage estimation and 

ground truthing startd after 

Lororo small scale irrgation 

scheme (Eldume Kailer) picture 

on the right, then Ngo’swe area, 

and finished with Kipcherere 

region. This covered different 

land-cover types along the field 

routes and transects.  

Some of the images taken during this activity are shown below (Figure 17 to 

Figure 20). In all the places we visited, Baringo County was the one affected the 

most by prosopis (mathenge) plant species. Different land cover types were also 

recorded and sampled between Moyale, Sololo, and Marsabit. The results from 

the field estimations are discussed in the next section. 
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Figure 17: Training of the field assistance on how to take measurements in the 
field (Grassland). 

 
Figure 18: Grass cutting and explanation to the community representative on the 
nature of work we are conducting in the area. 

 
Figure 19: Taking field measurements at a shrub land cover type in Baringo. 
Noted that majorly goats feed on this. 
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Figure 20: Vegetation growing under prosopis affected areas  

2.6 FIELD DATA 

Field data estimates are presented in Table 

7 Table 1below. The measurements were 

mainly done for shrubs and forage (grass) 

land cover types during ground truthing for 

purposes of model calibration. The 

measurements were done using a weighing 

machine with units in grams for different 

areas with a sample taken for square meter 

(g/m2). It was then converted to t/ha by 

dividing the recorded values with 90.71 

(using the formula 1 t/ha is equal to 90.71 

g/m2). High forage values were recorded 

for Barigo County, this was mainly in areas 

close to cropping areas. Otherwise, areas 

far from cropping zones are covered with 

shrubs and prosopis species in much of the 

county. The results obtained from field 

estimation were mainly towards the end of the season but we will still consider 

them for further analysis and validation of the prediction model output which is 

mainly seasonal.  
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Table 7: Forage estimation at different latitude and longitude in ton/ha. 

 

The data in Table 7 were collected in mid-December 2020, this was compared

 with the total pasture biomass predicted of OND season to have an idea on the 

comparability (Table 8). However, this was not a good representation for the 

season. Thus more data should be taken during the start, middle, and end of the 

rainy season for the three seasons after which an average is done per season. 

Latitude Longitude Mixed Shrub 

(g/m2) 

Forage 

(grass) 

(g/m2) 

Forage 

(grass) 

(t/ha) 

00 25’ 29.65” 360 0’ 33.77” 2,238 1,234 13.604 

00 25’ 29.70” 360 0’ 34.38” 1,135 500 5.512 

00 25’ 29.86” 360 0’ 34.19” 2,038 1,015 11.190 

00 25’ 31.08” 360 0’ 33.78” 2,370 1,430 15.765 

00 25’ 31.22” 360 0’ 34.06” 2,180 1,340 14.772 

00 25’ 31.89” 360 0’ 33.92” 2,125 1,215 13.394 

00 25’ 33.56” 360 0’ 39.64” 2,060 1,160 12.788 

00 25’ 31.95” 360 0’  42.77” 2,160 1,250 13.780 

00 31’ 55.64” 350 59’  11.75” 1,090 low lvl - - 

00 31’ 55.37” 350 59’  10.73” 450 hill top - - 

00 31’ 56.52” 350 59’  10.38” 302 hill top - - 

00 32’ 2.98” 350 59’  1.94” 356 hill top - - 

00 34’ 29.76” 350 59’  44.60” 1,209 640 7.055 

00 34’ 29.09” 350 59’  41.59” 1,570 1,015 11.190 

00 34’ 29.77” 350 59’  40.20” 1,250 690 7.607 

00 34’ 29.27” 350 59’  41.04” 1,770 1,285 14.166 

10 50’ 32.63” 370 51’  47.91” - 321 3.534 

10 50’ 35.09” 370 51’  49.06” - 345 3.803 

20 57’ 59.11” 380 11’  15.42” - 31 0.342 

20 57’ 59.24” 380 11’  16.90” - 24 0.265 

20 58’ 4.34” 380 11’  19.14” - 26 0.287 

30 17’ 21.10” 380 22’  17.00” - 19 0.209 

30 27’ 18.64” 380 31’  0.08” 740 433 4.773 

30 29’ 9.62” 380 48’  58.08” 451 - - 

30 28’ 9.24” 390 5’  40.34” 1, 289 779 8.588 

30 24’ 35.24” 390 4’  48.06” 1,211 644 7.100 

30 20’ 16.45” 390 4’  0.98” 1,010 524 5.777 

30 32’ 44.99” 380 38’  46.03” 1,310 776 8.555 

30 32’ 35.75” 380 38’  47.40” 1,561 1,040 11.465 
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This will give a good representation that can significantly compared with the 

predicted values.   

Table 8: Field weight measurement for ground truthing for ten different plot with 
three sample areas in each. 

Latitude 

(Deg.) 

Longitude 

(Deg.) 

Predicted OND 

[t/ha] 

Observed 

December [t/ha] 

1.8424 37.8633 1.08 3.53 

1.8431 37.8636 1.08 3.80 

2.9664 38.1876 2.08 0.34 

2.9665 38.1880 2.08 0.27 

2.9679 38.1887 2.08 0.29 

3.2892 38.3714 3.43 0.21 

3.4552 38.5167 5.81 4.77 

3.4860 38.8161 5.90 - 

3.4692 39.0945 6.23 8.59 

3.4098 39.0800 5.85 7.10 

3.3379 39.0669 4.56 5.78 

3.5458 38.6461 6.41 8.56 

3.5433 38.6465 6.41 11.47 

2.6.1 Water Points Sampling 

The status of water points that were within one 

kilometer along Isiolo, Marsabit, and Moyale 

route were sampled and recorded. The water 

points were majorly of two types i.e. Drilled water 

points and the pan types. Most of the drilled 

water points are powered by solar system (Solar 

Panels) which is a good initiative for 

sustainability compared to those powered by 

generator.  One of the drilled water point next to 

Marsabit National park was not working when we 

visited it (Picture on the right). We asked the 

community members that were around on the 

status and they informed us that the “generator that used to pump the water was 

stolen from the site and that was why it had been off for a while.” Thus drilled 

water points in ASALs should only be powered by solar system or wind as they 

can serve the community much better than the generator powered water points. 
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Location and status of the visited water points are shown in Table 9 below which 

is then followed by pictured taken for some water points. 

Table 9: Water point location, type, and status along the fieldwork route. 

GPS 

No. 
x y Elevation 

Water Point 

Type 
Status 

276 383213 256327 1343 Drilled 
Not working 

Generator Stolen 

269 446296 381913 645 Drilled Working 

270 440199 368828 637 Drilled Working 

272 427654 359808 634 Drilled Working 

273 422781 352122 600 Drilled Working 

274 407676 324307 552 Drilled Working 

275 400785 312749 503 Drilled Working 

280 377119 230490 768 Drilled Working 

283 368335 180391 546 Drilled Working 

286 352212 70256 834 
Ewasonyiro 

River  
River Flowing  

285 357944 155630 600 Merile River  Dry 

258 491852 382321 672 Pan Dry 

266 460705 391643 697 Pan Working 

271 440061 368673 623 Pan Working 

277 377940 251814 1244 Pan Working 

284 365208 173246 609 Pan Working 
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Figure 21: Protected water point (Pan) for domestic and animal use during dry 
periods. 

 

 
Figure 22: Camels taking water in shifts at a drilled water point powered by solar 
panels 

 

3 CONCLUSION 

The prototype prediction model performs well in pasture biomass prediction and 

only needs more field validation for continuous improvement and calibration. The 

field activities including local forage measurements for prediction model 

calibration should be done three times in a season i.e. from the onset of the rains 

in a particular season, during the month of the peak rains, and the cessation 

week of the season. This will improve field data report on biomass production of 

the different land cover units for different seasons and, an accurate calibrated 

forage estimation model for estimating of the forage condition and performance 
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of the model since the output is season based. Current water point locations will 

be added to the early warning system to give more information in the rangeland 

that is critical for pastoralist, sub-national key actors (government, NGOs),  and 

other relevant policy makers. 

4 RECOMMENDATION 

Transhumance data need to be assessed for MAM and OND season as the 

current available transhumance data is for the JJA season. The available one 

will only be used when giving the early warning for JJA season only. The is also 

need for more investment on the water point as it is still a major resource for the 

pastoralist. 

5 DISCLAIMER 

The administrative boundary data used in this work are no warranted to be error 

free nor do it imply official endorsement and acceptance by IGAD. 
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7 ANNEX 1 

 
Figure 23: JJA season constants used in modelling JJA seasonal Biomass, (a) is 
the intercept, (b) is the rainfall coefficient, (c) is the soil moisture coefficient, and 
(d) is the local R square.  

 
Figure 24: Predicted Biomass for JJA season over the study area from 2018 to 
2019 without considering the error term. 
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Figure 25: Predicted pasture biomass for JJA season over the study area from 
2018 to 2019 with the error term considered. 

 
Figure 26: Predicted pasture biomass with bias compared with observed pasture 
biomass for the JJA seasons from 2018 to 2019.  
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Figure 27: Bias corrected predicted pasture biomass compared with observed 
pasture biomass for the JJA seasons from 2018 to 2019.  

 

Figure 28: Predicted pasture biomass with bias compared with observed pasture 
biomass for the OND seasons from 2018 to 201 
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Figure 29: Bias corrected predicted pasture biomass compared with observed 
pasture biomass for the OND seasons from 2018 to 2019. 

 

 

Figure 30: Spatial correlation for JJA season between maximum NDVI and rainfall 
total over the area for the period 1999 to 2017. 
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Figure 31: Spatial correlation for JJA season between maximum NDVI and 
maximum soil moisture over the area for the period 1999 to 2017.  


